On the calculation of the critical moment to lateral-torsional buckling of beams: comparison of various methods

> S. Ádány, A.L. Joó, D. Visy Budapest University of Technology and Economics Budapest, Hungary

Motivation

- Design for lateral-torsional (LT) buckling requires Mcr (e.g. EC3)
- Question: how to calculate critical moment (Mcr) ??

W W W

Design codes give insufficient guidance

Methods for Mcr calculation

Formulae

- analytical
- ENV version Eurocode 3, Annex F
- AUS/NZ 4600

Rational analysis

- GBT Generalized Beam Theory
- FSM (cFSM) (constrained) Finite Strip Method
- FEM Finite Element Method

Outline

Numerical studies: comparison of various methods

- Study #1
- Study #2
- Study #3

Conclusions

Study #1: subject, methods

- Double-symmetrical I-section (IPE400)
- Uniform moment
- Single-span beam
- "Fork" supports
- Considered methods:
 - Analytical formulae (=ENV=AUS/NZ)
 - GBT
 - cFSM
 - FEM

Study #1: FEM model

- Shell finite elements
- Ansys
- 3 types of shell elements:
 - SHELL63: 4-node, proposed for thin plates/shells, elastic analysis
 - SHELL181: 4-node, Mindlin-Reissner plate theory, proposed for moderately thick plates/shells
 - SHELL281: similar to SHELL181, but with 8 nodes
- Cross-section constraining by "diaphragms"
- Various discretizations an "optimal" is used

Study #1: Cross-section constraining

Aim: to avoid cross-section distortion

Study #1: Cross-section constraining

- Aim: to avoid cross-section distortion
- Constraint equations
 - in Ansys: possible (CERIG command)
 - in simpler FEM software: not possible
 - decreased DOF number
- "Rigid" (truss) bars
 - possible in any FEM software
 - increased DOF number
 - simple way to control the position of direct transverse forces
- Not identical to a classical beam model !!

Study #1: Mcr values – comparison

Normal steel material

length	FEM	FEM	FEM	cFSM	GBT	Analytic
(m)	S63	S181	S281			
10	105.05	103.23	103.53	111.62	105.25	105.20
3	648.71	641.87	649.20	715.33	659.17	658.85
1	4790.0	4918.4	4972.2	5736.6	5343.2	5340.6
0.4	20405	23823		31896	32984	32968

Study #1: Mcr values – comparison

Normal steel material, <u>but v = 0</u>

length	FEM	FEM	FEM	cFSM	GBT	Analytic
(m)	S63	S181	S281			
10	105.25	103.40	103.70	105.18	105.24	105.20
3	652.87	645.30	652.76	657.27	659.07	658.85
1	4867.0	4985.6	5041.0	5227.2	5342.4	5340.6
0.4	20173	24160		29031	32979	32968

Study #1: Comparison, cont'd

Study #2: subject, methods

 M_2

- IPE400 and Hat section
- Linear moment diagram
- Single-span beam, various supports
- Considered methods:
 - FEM
 - GBT
 - ENV

 M_1

AUS/NZ

Study #2: FEM model

- Same as in Study #1
- FE type: SHELL181
- Cross-section constraining: constraint equations
- Medium dense FE mesh
- Material: normal steel, but v=0

Study #2: Some results

Study #2: Some results

Study #2: Some results

Hat section, <u>bottom</u> in compression

Study #2: Some results, cont'd

Hat section, top in compression

Study #2: Comparison of various methods

Hat section, fork supports, downward loading

mom.	FEM	GBT	EC	AUS
ratio	(kNm)	(%)	(%)	(%)
1	0.1203	4.1	4.0	4.0
0.5	0.1586	4.1	5.2	-1.4
0	0.2204	4.2	13.2	-5.3
-0.5	0.3120	4.4	55.3	0.3
-1	0.4256	4.7	371	47.0

Study #2: Comparison, cont'd

Hat section, fork supports, upward loading

mom.	FEM	GBT	EC	AUS
ratio	(kNm)	(%)	(%)	(%)
1	4.0315	5.4	5.4	5.4
0.5	5.2966	5.3	5.3	0.3
0	6.8881	5.4	9.2	2.8
-0.5	1.3653	5.2	487	678
-1	0.4256	4.7	371	47.0

Study #2: Comparison, cont'd

Hat section, partially clamped, upward loading

mom.	FEM	GBT	EC	AUS
ratio	(kNm)	(%)	(%)	(%)
1	14.99	12.5	28.0	12.5
0.5	19.65	12.5	190	7.3
0	25.33	13.2	202	11.0
-0.5	5.545	6.5	1336	660
-1	1.520	4.2	421	23.3

Study #2: GBT-FEM difference

various end moment ratios, lengths

Study #2: Conclusions

GBT and FEM

- good coincidence for practical cases
- different tendencies for very small slenderness

ENV and AUS/NZ formulae

- frequently lead to very bad Mcr estimations
- reasonable results only for limited cases

 (e.g. double-symmetrical cross-sections, fork supports, end moment ratio is positive)

Study #3: subject, methods

- IPE400 and Hat section
- single-span beam, various supports
- with transverse loading
- Considered methods:
 - FEM (same as in Study #2)
 - GBT
 - ENV (but no AUS/NZ)

Study #3: loading

Study #3: load application points

Study #3: Some results

Study #3: Some results, cont'd

Study #3: Comparison of various methods

■ IPE, L=10 m

load	load		fork		part	. clam	ped	part. clamped		
type	appl.	FEM	GBT	EC	FEM	GBT	EC	FEM	GBT	EC
	point	(kNm)	(%)	(%)	(kNm)	(%)	(%)	(kNm)	(%)	(%)
Load1	Тор	105		3.3	157		-2.3	207		3.2
	GC	141	1.8	2.1	198	1.9	-3.9	291	1.9	2.3
	Bottom	188		1.5	248		-5.1	408		1.7
Load2	Тор	89		0.9	135		-4.1	153		1.3
	GC	165	2.0	-7.2	218	2.0	-11.6	261	2.1	-8.9
	Bottom	305		-12.9	351		-17.6	445		-16.1
Load3	Тор	93		1.6	144		-8.5	209		2.1
	GC	118	1.3	1.3	168	1.3	-6.4	266	1.5	1.6
	Bottom	149		1.2	197		-4.2	336		2.0
Load4	Тор	127		1.3	231		-13.2	256		-5.3
	GC	273	0.5	-0.9	387	0.4	-7.5	479	1.0	-17.2
	Bottom	572		-1.0	639		-0.1	880		-26.4
Load5	Тор	86		2.3	139		-11.4	216		-5.1
	GC	107		2.4	156		-6.7	258		9.0
	Bottom	132		3.6	174		-0.9	298		29.4

Study #3: Comparison of various methods

Hat section, L=1.5 m

load	load	load	fork			part. clamped			part. clamped		
type	dir.	appl.	FEM	GBT	EC	FEM	GBT	EC	FEM	GBT	EC
		point	(kNm)	(%)	(%)	(kNm)	(%)	(%)	(kNm)	(%)	(%)
Load1	+	SC	2.39		312	3.89		158	7.65		605
	+	Тор	3.42		227	4.92		131	10.3		454
	+	GC	4.58	6.5	178	6.08	8.1	111	13.4	15.2	354
	+	Bottom	5.81		147	7.33		98.0	16.8		287
	-	SC	0.34		-70.1	0.62		-52.9	0.66		-79.6
	-	Тор	0.23		-62.1	0.49		-47.3	0.51		-75.2
	-	GC	0.17	-0.6	-54.7	0.39	0.9	-41.9	0.40	0.8	-70.6
	-	Bottom	0.13		-48.1	0.32		-37.0	0.33		-66.0
Load2	+	SC	0.26		6497	1.40		1133	1.47		4955
	+	Тор	0.48		4245	2.43		757	2.55		3000
	+	GC	0.79	11.6	3043	3.44	10.2	620	3.53	10.2	2295
	+	Bottom	1.02		2755	4.10		611	4.14		2089
	-	SC	1.42		-94.6	1.39		-83.8	1.46		-94.9
	-	Тор	0.58		-89.1	0.73		-74.5	0.75		-90.6
	-	GC	0.25	-7.0	-78.6	0.43	-1.1	-63.9	0.44	-1.1	-84.9
	-	Bottom	0.14		-67.5	0.29		-54.3	0.29		-78.9

Study #3: Conclusions

- good coincidence between GBT and FEM for practical cases
- limits w.r.t loading in GBTUL
- due to direct transverse forces first buckling mode is not always local even if cross-sections are constrained

Conclusions

- "Exact" value of Mcr ??
- GBT and FEM can be proposed for Mcr calculation
- FEM is more general, but its proper application is demanding
 - cross-sections are to be constrained (plus v=0)
 - excluding non-LT buckling is difficult for thin plates
- Applicability of ENV and AUS/NZ formulae is limited
- Formulae may lead to significant errors
- Very short beams: shell-type and beam-type numerical models have different tendencies
- More results for C sections

Thank You!