

The Ninth International Conference on Computational Structures Technology (CST2008) Athens, Greece, 2-5 September 2008

Numerical Modelling of Shear Connections for Composite Slabs

Noémi Seres, Attila László Joó, László Dunai

Budapest University of Technology and Economics Department of Structural Engineering Budapest, Hungary

Introduction

- Structural arrangement
 - Concrete slab

Frictional interlock

Profile deck

Mechanical interlock – rolled embossments

Steel beam

• Failure modes

(I) flexural failure (II) longitudinal shear failure (III) vertical shear failure

Introduction

• Performance tests

(a) Full – scale test

• Scope

- (i) simplify the experiments
- (ii) develop an advanced numerical model for the simulation

Experimental program

Short beam specimens

Geometry: 150x150x700

Type: Concrete beam

Reinforced concrete beam

Composite beam

- half wave of an open through profile
- with and without rolled embossments
- ~3mm of rim

Verification background for further numerical models

Reinforced concrete modelling

- Reinforced concrete short beam
 - Quarter beam model
 - ANSYS
 - Material properties set by experiments
 - Concrete \rightarrow Solid65
 - Steel \rightarrow Link8
 - Small loadsteps
 - Velocity of crack propagation stays low
 - Numerical stability

Reinforced concrete modelling

Reinforced concrete short beam

- 1) Full reinforcement, non crushing concrete, shear transfer coefficient=1
- 2) Without stirrups, non crushing concrete, shear transfer coefficient = 1
- Only tensioned reinforcement, non crushing concrete, shear transfer coefficient = 1
- Only tensioned reinforcement, non crushing concrete, shear transfer coefficient = 0.3
- 5) Experimental results
- 6) Only tensioned reinforcement, crushing concrete, shear transfer coefficient = 0.3
- ← Crack patterns for first crack and final state

• "Fictive" local model

• "Fictive" local model

Rectangular dishing type:

Material	FE in ANSYS
Concrete	Solid65
Steel	Shell181
Chemical interlock	Conta173-Targe170

• "Fictive" local model

- "Fictive" local model
 - Runtime ~5 hours
 - Significant increase in runtime when increasing the model size
 - Efficient composite beam model
 - Embossments spring
 - Spring constant \rightarrow local model analysis

• Parametric study by fictive models

Parameters:

- Embossment's depth
- Embossment's length
- Sheeting thickness

Expected results by experimental observations [1]:

- Deeper embossment → higher shear stress value (most significant)
- Longest length \rightarrow higher shear resistance (limit!)
- Sheeting thickness \rightarrow significant effect on stiffness
- [1] P. Mäkeläinen, Y. Sun: "The longitudinal shear behaviour of a new steel sheeting profile for composite floor slabs", Journal of Constructional Steel Research, 49, 117-128, 1999

• Depth analysis

- Curve's character remained the same
- Increase in the load when increasing the depth at the end of linear phase
- Significant difference in ultimate loads \rightarrow tendency not obvious

Depth [mm]	Load at the end of the linear phase [kN]	Ultimate load [kN]
10	0.3345	1.304
12.5	0.3588	3.488
15	0.4054	4.055
17.5	0.4095	3.184
22.5	0.4257	3.857
25	0.4340	4.055

- Length analysis
 - Increase in load when increasing the length
 - The difference between the ultimate loads in 10% range
 - The change of length has not significant influence

Length [mm]	Load at the end of the linear phase [kN]	Ultimate load [kN]
15	0.3649	3.604
17.5	0.4054	4.054
20	0.4257	3.812
21	0.4340	4.055
22.5	0.4440	3.925
30	0.5292	3.936

• Effect of sheeting thickness

• Increase in stiffness when increasing the sheeting thickness

Modelling of circular embossment

- Basic behaviours determined for "fictive" local model
- •Refinement \rightarrow new dishing type
- •Same arrangement as "fictive" model

 "Step by step" modelling process, modelling problems

- (1) lin. elastic steel properties on the whole model
- (2) lin. elastic steel and concrete
- (3) non-crushing concrete, shear transfer coefficient=1,0
- (4) non-crushing concrete, shear transfer coefficient=0,3
- (5) crushing concrete, shear transfer coefficient=0,3
- (6) + nonlinearity of steel
 - \rightarrow symmetrical contact surface

• Circular embossment's local model

Concluding remarks

- Novel alternative of experimental analysis (short beam) for composite connection.
 - Tendency of the failure modes became traceable \rightarrow numerical analysis
- Adequate concrete and reinforced concrete model
- Numerical local model for fictive rolled embossments
 - Basic behaviour modes
 - Parametric study ↔ published experiments

Contradiction in the results of the depth and length analysis \downarrow Chosen experiment \leftrightarrow traditional push-out tests

Necessity of new laboratory experiments to prove the results \downarrow Pilot experimental investigation for local model calibration

Pilot experimental program

Special pull-out test

- 20x20x20 RC cube
- Embedded steel plate with one enlarged embossment

Thank you

Modelling of pure steel behaviour

- Effect of friction coefficient on the local model
 - Stiffness increase when the friction of coefficient increases

